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Abstract: The intermittency of fog occurrence (the switching between fog and no-fog) is a key
stochastic feature that plays a role in its duration and the amount of moisture available. Here,
fog intermittency is studied by using the visibility time series collected during the month of July
2022 on Sable Island, Canada. In addition to the visibility, time series of air relative humidity and
turbulent kinetic energy, putative variables akin to the formation and breakup conditions of fog,
respectively, are also analyzed in the same framework to establish links between fog intermit-
tency and the underlying atmospheric variables. Intermittency in the time series is quantified with
their binary telegraph approximations to isolate clustering behavior from amplitude variations.
It is shown that relative humidity and turbulent kinetic energy bound many stochastic features
of visibility, including its spectral exponent, clustering exponent, and the growth of its block en-
tropy slope. Although not diagnostic, the visibility time series displays features consistent with
Pomeau–Manneville Type-III intermittency in its quiescent phase duration PDF scaling (−3/2),
power spectrum scaling (−1/2), and signal amplitude PDF scaling (−2). The binary fog time series
exhibits properties of self-organized criticality in the relation between its power spectrum scaling and
quiescent phase duration distribution.

Keywords: dynamical model; fog; intermittency; self-organized criticality; sporadic randomness

1. Introduction

Fog occurrence is associated with saturated water vapor and accompanying water
droplets near the earth’s surface, causing visibility to drop below 1 km [1]. This reduction
in visibility raises numerous logistic and safety issues for aviation, seafaring, and trans-
portation. Ecologically, fog plays an underappreciated role through its transport of water
droplets, aerosols, and microorganisms, which impacts the thermodynamic, hydrologic,
photosynthetic, and nutrient properties of ecosystems [2,3]. The potential for fog as a
potable water source has also been proposed and explored [4,5]. Fog formation continues
to receive attention in viticulture, as sustained moist conditions modulate the microclimate
and promote mildew disease and fungal infection [3].

A key aspect in fog statistics is its intermittency, the switching between fog and no-fog
phases (on–off switching properties), which was shown to be related to the long-term
persistence of fog events with a characteristic time scale that appears invariant [6]. Intermit-
tency in precipitation, a process that similarly exhibits on–off switching properties between
rain and no-rain events, has received copious attention in literature and has been modeled
using stochastic point processes [7,8], multiplicative cascades [9,10], and traditional stochas-
tic models [11]. More recently, Rigby and Porporato [12] found that summer convective
rainfall exhibits features of Pomeau–Manneville Type-III intermittency, an example of a
sporadically random process (a behavior between periodicity and pure randomness). Fur-
ther, rainfall has been shown as an example of self-organized criticality (SOC) [13], which
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started with the original work of Bak and Chen [14]. In contrast, limited attention has been
afforded to dynamic models in fog, and this limitation motivated the current work.

A recent study proposed some similarities between rainfall and fog statistics at coarse
time scales [15]. Motivated by these results, the work here seeks to explore the extent to
which existing dynamical models for precipitation apply to fog occurrences by comparing
several scaling relations that describe the fog time series to those that have been noted
in the literature. High-resolution time series of visibility Vis taken over a one-month
period is used to explore the analytic relations concerning the power laws in the spectral
density, the distribution of the off phases, and the distribution of the event sizes for
phenomenological comparison to the proposed dynamical models. In addition, the current
study also seeks to explore atmospheric variables that could possibly contribute to the
intermittency of fog occurrences. To this end, time series of air relative humidity RH and
turbulent kinetic energy k, which may provide conditions for the formation and break-up
of fog, respectively, are also analyzed herein in the same framework to draw connections
between these atmospheric variables and the proposed dynamical models. This analysis
will serve as a first step to developing stochastic models for fog, which can be employed
in fog simulation studies, to check physical models, and to explore underlying formation
processes of fog.

1.1. Types of Dynamical Intermittency

Intermittency is a route to chaos in dynamical systems and is characterized by the
irregular alternation between phases of regular, almost periodic behavior (“laminar” phases)
and phases of chaotic dynamics (“turbulent” phases). As a control parameter exceeds
a critical value, the system eventually becomes fully chaotic without laminar phases.
Models of different types of intermittency have been classified and observed in various
systems [16,17].

Pomeau and Manneville [18] described three types of intermittency (Types I−III)
caused by linear instabilities of periodic trajectories, where Pomeau–Manneville Type I
intermittency (PM1I) is associated with an inverse tangent bifurcation, Type II (PM2I) with
a Hopf bifurcation, and Type III (PM3I) with a period-doubling bifurcation. PM1I has been
observed in numerical studies of ordinary differential equations and discrete dynamical
systems [19–21] and in specialized experiments [22–25]; PM2I in numerical and experimen-
tal studies of nonlinear oscillators [26,27] and in a hydrodynamical system [28]; and PM3I
in biological systems [29,30], electrical applications [31–34], rainfall time series [12], and at
the onset of hydrodynamic turbulence [35].

On–off intermittency is another model that describes a time series characterized
by switching between near-constant “off” phases punctuated by burst phases of large
deviations caused by sudden instabilities [36], and has been observed in many mathematical
models [36–39], electrical circuits [40,41], spin wave instabilities [42], gas discharge plasma
systems [43], and the electroconvection of nematic liquid crystals [44]. Other models
not considered here include Type V [45,46], Type X [47], multi-intermittency [48] and
crisis-induced intermittency [49].

For comparison of phenomenological features of these intermittency models with
those of fog time series, the analytic properties related to the distribution of the duration of
the quiescent or laminar phases, power spectral density, and distribution of event size (or
signal amplitudes) can be explored, which are summarized in Table 1. The distribution of
the duration of the laminar phases has been used in the literature to differentiate between
types of intermittency. PM3I and on–off intermittencies generate probability distribution
functions (PDFs) of the quiescent phases PDF(l) that decay as a power law with an exponent
of −3/2 (that is, PDF(l) ∼ l−3/2) at small l, while PM2I generates ones with an exponent
of −2 at small l followed by an exponential tail (or cutoff) at larger l [50]. In contrast, PM1I
is expected to show a power law decrease with an exponent of −1/2 for small l followed
by an increase at large l [50].
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Table 1. Phenomenological features of intermittency models under consideration, where PDF refers
to the probability density function, l is the duration of the laminar or quiescent phases, f is the
frequency or inverse time scale, x is the event size, and Ex is the spectral density function .

PM Type-I PM Type-II PM Type-III On–off

PDF(l) l−1/2 l−2 l−3/2 l−3/2

Ex( f ) ( f |log10 f |2)−1 f−1/2 f−1/2 f−1/2

PDF(x) x−1 x−2 x−2 x−1

Procaccia and Schuster [51] showed that the power spectral density Ex( f ) scales as
( f |log10 f |2)−1 in a PM1I process and as f−1/2 in a PM2I or a PM3I process for f → 0
by considering their 1-D local Poincaré maps [18], where f is the frequency (or inverse
time scale). Venkataramani et al. [52] demonstrated that the power spectrum of an on–
off intermittent process with no noise exhibits a power law decay with an exponent of
−1/2 over an intermediate range of frequencies dependent on the system constants. Lastly,
the PDF of the signal amplitude (or event size), PDF(x), is considered. On–off intermittency
shows a decay in PDF(x) with an exponent of −1 for small x [53], PM1I with an exponent
of −1, and PM2I and PM3I with an exponent of −2 [54].

More generally, Pomeau–Manneville intermittency maps and their stochastic coun-
terparts have been shown to be examples of sporadic randomness. Based on the entropic
characteristics of trajectories, Gaspard and Wang [54] defined a class of sporadically ran-
dom dynamical systems that reside between periodicity (processes that generate repeating
sequences) and regular randomness (processes whose complexity grows linearly with
sequence length, i.e., Markov chains and Brownian motions, which have a convergent
entropy rate). Sporadic random processes display a strong memory while retaining a
stochastic component, and the complexity grows as a power law with the sequence length.

1.2. Self-Organized Criticality

Generally, phase transitions occur when the control or tuning parameter (an ambient
property) is varied across its critical value so that the order parameter (a macroscopic,
measurable property) exhibits a jump in its values. The phase transition is of the first
order if the order parameter varies discontinuously (i.e., a discontinuous change in entropy
at a fixed temperature corresponding to latent heat), and of the second order if it varies
continuously but not analytically (i.e., the transition is marked by a sharp corner on the
phase diagram).

In second-order continuous phase transitions, the system can reside at criticality,
a state between two qualitatively different types of behavior. Since phase transitions
typically separate an ordered state from a less ordered one, systems at criticality are often
said to be on the edge of chaos, and have been shown to exhibit optimal memory and
processing capabilities (for a review, see [55]). Further, in systems where the tuning and
order parameters are coupled, the critical point can become an attractor so that the system
tunes itself as it evolves toward criticality, in a behavior termed self-organized criticality
(SOC) [14]. In SOC, the system is driven toward a second-order phase transition, wherein
the dynamics is driven by universal properties. For an SOC system at criticality, a relation
is expected between the spectral exponent and the power law decay of the quiescent phases.
Controversies notwithstanding, SOC has been shown to be a possible candidate for a
wide variety of systems in physical, biological, and social sciences, spanning from climate
fluctuations [56] and neural systems [57] to wars [58] (for a complete review, see [59–61]).
Similar to the physical analogy laid out by Peters and Neelin [13] for rainfall, it can be
argued that a critical value of RH (the tuning parameter) marks the continuous phase
transition to a regime of fog events.
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2. Methods
2.1. Measurements

Measurements were collected on Sable Island (43.9337◦ N, 59.9149◦ W), a small
North Atlantic island located approximately 300 km southeast of Halifax, Nova Scotia
(see Figure 1), as part of the Fog and Turbulence Interactions in the Marine Atmosphere
(FATIMA) field campaign. The site was chosen for its proximity to the Grand Banks region,
which is identified to have one of the climatologically highest marine fog occurrences
with a peak of 45% during June–July–August [62]. The island’s maximum elevation above
sea level is 30 m, making it an ideal location for collecting data without significantly
disturbing the marine sea fog advecting past it. Data were collected from 1 to 31 July
2022, during which fog (horizontal visibility ≤ 1 km) was observed approximately 25% of
the time.

Figure 1. Location of Sable Island in the Grand Banks region of the North Atlantic Ocean (top). Sable
Island is shown in the inset (bottom). Images were taken by the Sentinel-2 multispectral satellite.

Longitudinal (U), transverse (V), and vertical (W) velocities were collected with a
triaxial sonic anemometer (Campbell Scientific IRGASON) at a height of 2 m above the
ground. Corrections to the sonic anemometer data were applied to account for line path
averaging and flow distortion by the sonic transducers [63,64]. A low-pass filter was then
applied to avoid high-frequency noise, and subsequent turbulence data were processed
using 5-min windows. Gaps in velocity data due to rain were filled using a moving average
over a one-hour window, and then again with a one-day window. Turbulence kinetic
energy k is then calculated as

k =
1
2

(
(u′)2 + (v′)2 + (w′)2

)
, (1)

where u′, v′, and w′ are the longitudinal, transverse, and vertical fluctuating velocity
components, respectively, and the overbar denotes averaging over a 5-min period.

Visibility (Vis) and relative humidity (RH) time series were collected at 15-s intervals
using a forward scatter sensor (Vaisala FD70) and the attached humidity probe (Vaisala
HMP155), respectively, located approximately 20 m west of the sonic anemometer at a
measurement height of 2.5 m (see Figure 2). Here, visibility is used as a proxy for the
intensity of fog, with Vis being inversely proportional to the liquid water content [65].
Visibility and relative humidity data are also down-sampled to 5-min averages.
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Figure 2. Photos of the IRGASON (a) and the FD70 with an attached HMP155 (b). The IRGASON
is mounted on a measurement tower at a height of 2 m, and the FD70 is located 20 m west of the
measurement tower with a measurement height of 2.5 m for Vis and 1.7 m for RH (c). The figure is
created by the author.

2.2. Analysis Methods

To analyze intermittency statistics, the telegraph approximation (TA) is used. The TA
of a time series s(t) isolates its clustering behavior from its amplitude variations by trans-
forming it into a binary series:

TA(s(t)) =
1
2

(
s(t)− s∗

|s(t)− s∗| + 1
)

, (2)

where TA(s(t)) takes on a value of 1 when s(t) exceeds a threshold s∗ and a value of 0 other-
wise. As it retains only threshold-crossing (on–off or off–on switching) information, the TA
series contains no information about magnitude variation. Here, k∗ = |k| = 0.61 m2/s2,
Vis∗ = 1000 m (to reflect the definition of fog occurrence so that TA(Vis) = 1 when
Vis ≤ 1000 m and TA(Vis) = 0 otherwise), and RH∗ = 100 % (to reflect saturation so that
TA(RH) = 1 when RH ≥ 100% and TA(RH) = 0 otherwise).

Telegraph approximation has been used in turbulence research [66,67] to quantify
clustering and intermittency behavior in studies of temperature, velocity, and scalar concen-
tration fluctuations in the atmospheric surface layer, within canopies, and across several sur-
face roughness, density and thermal stratification [68–74]. The same method has also been
applied to the study of rainfall intermittency [75]. Sreenivasan and Bershadskii [67] showed
empirically from several numerically generated stochastic series that when the power spec-
tra of the original series scales as f−n and that of the TA series as f−m,

m =
n + 1

2
, (3)

where f is, as before, the frequency, n is the spectral exponent of the original series, and m is
the spectral exponent of the TA series. This relation appears to hold across a broad range
of stochastic processes. Generally, m < n (that the spectra of the TA decays slower than
that of the original series) indicates that there is more ’memory’ in the TA series such that
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amplitude variations seem to have “decorrelating” effects on the series. The spectra were
calculated using standard fast Fourier transforms from the normalized time series

sn(t) =
s(t)− s(t)

σs
, (4)

where the overbar denotes the mean, and σs is the root mean square value of s(t). The win-
dow length is set to half of the time series length.

The cluster exponent α characterizes the clustering tendency of the time series and is
determined from the scaling of the local standard deviation of the density of threshold-
crossings 〈δn2

τ〉1/2 with τ:
〈δn2

τ〉1/2 ∼ τ−α, (5)

where δnτ = nτ − 〈nτ〉, nτ is the average density of zero-crossings within a time interval τ
(i.e., the number of threshold crossings normalized by the number of points in that time
interval), and angled brackets denote time averaging for window size τ. While a white
noise process (that has no clustering tendencies in its zero crossings) has a cluster exponent
of α = 0.5, Sreenivasan and Bershadskii [67] showed that α→ 0.1 (finite clustering persists)
as the Taylor microscale Reynolds number Reλ → ∞ in turbulent flows.

The intermittency exponent µ can be calculated from the local average of the variance
dissipation rate of a signal s(t) in a time interval τ,

ξτ =
1
τ

∫ t+τ

t

∣∣∣∣ds(t)
dt

∣∣∣∣2dt, (6)

as
〈ξq

τ〉
〈ξτ〉q

∼ τ−µq . (7)

A uniform random distribution of pulses yields µq = 0, while an intermittent series
yields non-zero µq values. Here, only µ2 (q = 2) is considered, and the subscript is dropped
henceforth. Calculated from the full series, µs contains information on both clusterization
and amplitude variations, while µTA calculated from the TA series retains only clusteriza-
tion information. Thus, their relative magnitudes indicate the role of amplitude variations
and clusterization in the observed intermittency. That is, µTA < µs indicates that amplitude
variations amplify the intermittency; µTA > µs indicates that amplitude variations mitigate
intermittency; and for µTA ≈ µs, much of the observed intermittency is due to the on–off
and off–on properties but not amplitude variability.

The rate of growth of the complexity of a trajectory in time classifies a process as
periodic, random, or sporadically random. A conventional method to quantify this growth
of complexity for discrete time series is to study the information content of the systems
(information theory). Consider a sequence A with symbols ai, where i = 0, ..., λ, from a
given alphabet. The sequence A is considered periodic if some symbols or sub-sequences
occur repeatedly, and disordered (or random) when all of its symbols occur with equal
frequency. This can be measured by the Shannon entropy [76]:

H = −∑
i

pilogpi, (8)

where pi is the probability that symbol ai occurs at any position. To reflect the correlations
between the symbols, Equation (8) can be generalized to obtain the block entropy

H(n) = −∑
i

p(n)i logp(n)i , (9)

where p(n)i are the probabilities of the combinations of n symbols. For periodic processes
with period τ, the block entropy reaches a constant and stops growing (entropy rate
becomes zero) at n > τ. For purely random processes, the entropy grows linearly with n,
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reflecting the constant level of uncertainty with each additional step. Thus, for a sporadic
random process, where the system is always yielding information and decreasing the
uncertainty in the next step but never reaching complete regularity, the entropy grows
sub-linearly without reaching a plateau. Therefore, a relation H(n) ∝ nβ, with 0 ≤ β ≤ 1
is expected [54]. Here, to maximize the value of n available without significant finite-
size effects, the binary TA signal is used to limit the alphabet to binary (0 and 1) and,
subsequently, the number of possible sequences to 2n. The maximum n is then determined
as nmax = log2[N/100] so that the estimate would be sensitive to sequences of probability
on the order of 0.01.

The connection to SOC in the current study arises because the PDF of the duration of
the quasi-regular or “laminar” phases, and the PDF of the event sizes both exhibit power
law scaling, i.e., PDF(l) ∼ l−γ and PDF(x) ∼ x−β. In particular, for SOC systems near
critical behavior, Jensen et al. [77] showed that

m = 3− γ (10)

using the classical sandpile model near critical slopes. To account for intermittency effects,
Bershadskii et al. [66] modified this relation to

m = 3− γ− µ/2, (11)

where µ is the intermittency correction calculated using squared temporal gradients as
in Equation (7).

3. Results
3.1. Overview

Figure 3 presents the time series of RH, k, Vis, and their corresponding TA series over
the experimental period. Relative humidity values greater than 100% were observed and
could be attributed to the reported sensor inaccuracy of ±1.7% RH. Nonetheless, the study
at hand concerns only the switching across saturation, and RH∗ values of 100 ± 1.7% do
not significantly alter the conclusions presented below. It can be seen that fog occurrence
(Vis ≤ 1000 m) generally follows high RH and low k. To explore the combined effect of
these two criteria, an additional “RH1k0” TA series was calculated by assigning a value of 1
only when both TA(RH) = 1 and TA(k) = 0. Analysis of this series will be discussed below.

Binned scatter-plots of Vis against RH and k are presented in Figure 4 with the
colormap indicating the density of points. Bin sizes are 0.5% for RH, 0.03 m2/s2 for k,
and 400 m for Vis. A linear fit between Vis and RH yielded a coefficient of determination
R2 = 0.63. In contrast, Vis and k appear uncorrelated (R2 = 0.0045). Nonetheless, the high-
est density of points for Vis ≤ 1000 m occurs for low k, indicating that low turbulence
levels are well correlated with fog occurrences.

3.2. Spectra

The spectra of both the original and the TA series of RH, k, and Vis are presented
in Figure 5. The spectrum for RH shows a peak at 24 h, which could arise from diurnal
variation. As a result, the frequency range corresponding to 22–26 h was excluded when
calculating the power laws for RH. A mild bump at 24 h can also be seen in the spectrum
for Vis, which could be a signature of night-time fog that disappears in the morning.
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Figure 3. Time series of RH, k, and Vis and their corresponding TA series over the sampling period.
Dashed lines in the original series indicate the thresholds (RH∗ = 100, k∗ = |k| = 0.61 m2/s2,
and Vis∗ = 1000 m) used in Equation (2). The last row presents the combined RH1k0 TA series.
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Figure 4. Binned scatter-plots of Vis against RH (left) and against k (right) with the colormap
indicating the density of points.

All spectra appear to exhibit three regimes of power-law scaling, separated at 24 h
and at 1 h. Of the three regimes, the fastest decay appears to occur within the frequency
range of 1–24 h, while the spectra for time scales >24 h and <1 h decay at a slower rate.
Hereafter, we label the frequencies associated with time scales >24 h as slow, <1 h as fine,
and bounded between daily and hourly as intermediate. Returning to spectral exponents,
the spectral slope n approaches a value of −1/2 for the slow regime in Vis but not in
RH or k. Generally, for the slow scales, the Vis series exhibits a shallower slope in its
spectra than RH or Vis. The spectrum of the combined RH1k0 TA series exhibits similar
slopes to k in its intermediate and fine scales and to RH in its slow scales.
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Figure 5. Energy spectra of the full (left) and TA (right) series of all three variables. The spectra have
been offset to permit comparisons. Time scales of 24 h ( ) and 1 h ( ) delineate the scaling regimes.

Overall, the relation between spectral exponents m and n reasonably follow
Equation (3) (see Figure 6). For the slow time scales, m > n was observed in both
RH and Vis, meaning that there is less “memory” in the TA series and that amplitude
variations have correlating effects. For the intermediate and fine time scales (<24 h) in
RH and Vis, and for all time scales in k, the spectra of the TA series decay slower than
that of its corresponding full series (m < n), meaning that amplitude variations seem
to have de-correlating effects at those time scales. Thus, much of the power law scaling
may be due to the memory in the switching between on–off and off–on instead of the
amplitude variations.

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

Figure 6. A plot of the spectral exponents of the original series (n) and of the corresponding TA
series (m) for all three variables and all three scaling regimes indicated in Figure 5. The dashed line
indicates the relation in Equation (3).

As a preliminary indicator of the extent to which variability in RH and k is correlated
with Vis, the magnitude-squared coherences C of the full and TA series are presented
in Figure 7. In addition, the additive effect of RH and k in explaining Vis is considered in
CVis,RH1k0

calculated between Vis and a mixed model based on the linear combination of
RH and k (with each normalized to span from 0 to 1). Similarly, CTA(Vis),TA(RH1k0)

considers
the coherence between TA(Vis) and the combined RH1k0 TA series. The coherences are
smoothed through bin averaging to highlight the underlying trends.
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Figure 7. Squared coherence CVis,s between Vis and the two control variables s = RH and
s = k (and their combination) as a function of frequency f (top). The analysis is repeated for
the TA series (bottom). The squared coherence measures how correlated Vis is to a control variable
at a given f . Note the similarity in CVis,s for the original and TA series at intermediate and fast
time scales.

For the slow time scales of the full series, CVis,RH exhibits peaks (>0.8) at the 5 d, 2 d,
and 1 d time scales (showing that the spectra of fog can be reasonably predicted from the
spectra of relative humidity at these time scales), while CVis,k exhibits a minimum (<0.2)
so that the spectra of fog are not related to those of k in this region. For the slow time
scales of the TA series, it appears that the behavior of Vis is captured by that of RH
(CTA(Vis),TA(RH) approaches 1 for time scales >2 d). The combined RH1k0 TA series appears
to only marginally improve the correlation to Vis near the 1 d time scale. For fine and
intermediate time scales, both RH and k (and their combined effect) exhibit C ≈ 0.4 in
both the full and TA series, indicating that although RH and k behaviors are somewhat
correlated to that of Vis, neither is able to fully explain the variability in Vis. These results
further prompt the current analysis into its intermittency structure and the possible models
beyond the activation and inhibition mechanisms of fog.

3.3. Cluster Exponents

Standard deviations of the zero-crossing density fluctuations δnτ as a function of τ are
featured in Figure 8. All TA series exhibit clear power law scaling with a break in scaling
behavior, resulting in two regimes. Generally, there is significant clustering (α = 0.24− 0.26)
for larger time scales followed by almost no clustering (α = 0.5 consistent with a white
noise process). The break between these two regimes occurs at τ ≈ 12 h for RH, k and
RH1k0, and at τ ≈ 24 h for Vis. Surprisingly, the cluster exponent for Vis (α = 0.25) is
consistent with those reported in [15], where α = 0.26 and α = 0.25 based on deposition
data from a fog collector at a coastal and an inland site, respectively, for τ < 5 days.

The intermittency exponents µs and µTA are presented in Figure 9. All TA series show
similar levels of intermittency (µTA = 0.42− 0.44). For RH and Vis, µTA > µs shows that
amplitude variations mitigate intermittency and have ’correlating’ effects. In contrast,
µTA ≈ µs for k shows that much of the intermittency in k originates from its on–off and
off–on switching properties.
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the scaling for a white noise process (α = 0.5) are indicated with straight black lines. The separation
of the two scaling regions is also indicated for each variable with a vertical dashed line.
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Figure 9. Normalized second moment of the squared temporal gradients for RH (a), TA(RH) (b), k
(c), TA(k) (d), Vis (e), and TA(Vis) (f). The straight lines are best-fits that indicate the scaling laws,
and the dashed vertical lines indicate a time scale of 24 h.
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3.4. Laminar Period Duration and Signal Amplitude PDFs

The PDFs of the duration of quiescent (or laminar) periods for all variables exhibit a
power law decay, consistent with systems at criticality (Figure 10). In particular, Vis shows
a power law scaling exponent γ close to−3/2. The scaling exponents for RH, k, and RH1k0
are lower at −1.24, −1.25, and −1.26, respectively.

Equation (10) overestimates the measured spectral slope m (as in Figure 5) for all
variables by differences of 0.12–0.40. When including intermittency corrections as proposed
by [66], µs (calculated from the full series) was able to account for the difference between
measured and estimated m for RH, and µTA (calculated from the TA series) was able to
account for the difference for Vis. For k, neither µs nor µTA was able to account for the
difference, showing that amplitude variations impact the relation, and the SOC model (or
its corrected version for intermittency) cannot fully describe the on–off switching properties
(Figure 11).
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Figure 10. PDFs of the laminar period duration for RH, k, and Vis, with γ values for each variable
noted in the legend. Also indicated are the scaling relations expected of a PM1I process (−1/2),
a PM2I process (−2), and a PM3I or an on–off intermittency process (−3/2).
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Figure 11. Measured spectral exponents of the TA spectra m (from Figure 5) against expected m of an
SOC process near critical point (a) with intermittency corrections from the full series (b) and from the
TA series (c). Dotted lines represent a slope of 1.
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The PDFs of the signal amplitudes are shown in Figure 12 along with
expected −1 and −2 slopes (see Table 1). The x-axis for PDF(RH) is reversed to reflect
the probability of deviating from the saturation condition. Of the three variables, only
PDF(Vis) exhibits a clear −2 scaling. The −2 scaling in Vis occurs over the approximate
range of 300–2000 m, which envelopes the condition for fog occurrence (Vis = 1000 m).
In PDF(k), there appears to be two regimes separated at approximately 1 m2/s2 so that
PDF(k) ≈ 1 for k < 1 m2/s2 followed by a power law decay at k > 1 m2/s2. A scaling
of −2 seems to be present only for a limited range (of approximately k = 0.8− 1.2 m2/s2)
in the transition between the two scaling regimes. In contrast, PDF(RH) has no such power
law scaling.
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Figure 12. Signal amplitude PDFs for RH, k, and Vis. A power law scaling of −1 consistent with
PM1I and on–off intermittency, and of −2 consistent with PM2I and PM3I are indicated for reference.

3.5. Block Entropy

The block entropy H(n) and its growth rate with n (slope log
[

H(n+1)
H(n)

]
/log

[
n+1

n

]
) for

the TA series are presented in Figure 13. For a sporadic process, the slope should converge
to a constant value less than 1. All three variables appear to grow nonlinearly, and begin
to reach a constant value between 0.5 and 0.6. In the context of block entropy, k appears
to be the least ordered (most random), as it seems to asymptotically approach a slope of
approximately 0.6. While these results suggest that RH, k, and Vis can be described as
sporadically random processes, the limited nmax precludes conclusions on their behavior
for longer time scales. It can be noted that the slope of H(n) for Vis is bounded by that of
RH and k at all n > 1, and that the RH1k0 series exhibits similar H(n) values and growth
rate to Vis.
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Figure 13. Block entropy H(n) (left) and its slope (right) as a function of block length n. Solid line in
the left panel corresponds to a slope of 1 representative of a purely random process.
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4. Study Limitations

Although a longer sampling period than the current one-month dataset is best to
make more affirmative conclusions, the agreement between the scaling exponents pre-
sented here and in other studies of longer duration lends credence to the results. Räsänen
et al. [15] presented a longer-term analysis on fog deposition measured by a tipping
bucket between June 2014 and September 2016 at a coastal site in Northern California
and between October 2013 and February 2016 at an inland site in Southeastern Kenya.
The TA analysis revealed that cluster exponent α, laminar period duration PDF expo-
nent γ, and fog event size scaling exponent agree reasonably well with the exponents
presented here (see Table 2), despite the differences in sampling duration. Further, the simi-
larity of the scaling exponents shows that they may also be agnostic to the study site and
measurement technique.

Table 2. Comparison of the cluster exponent α, laminar period duration PDF exponent γ, and fog
event size scaling exponent from data taken on Sable Island in the current study, an inland site in
Southeastern Kenya, and a coastal site in Northern California [15].

α γ PDF(Vis)

Sable Island 0.25 1.52 ∼2
Inland 0.25 1.41 1.83
Coastal 0.26 1.33 1.86

Since instrument uncertainties tend to occur at high frequencies and very low fre-
quencies, the scaling relations within the TA framework are relatively insensitive to these
uncertainties in the fine scales. In fact, more extensive scaling in the TA spectra than in the
full signal spectra have been observed [67]. In the current study, finite clustering persists in
the fine scales for all variables considered (Figure 8) so that white noise at the very finest
scales does not appear to leave a noticeable signature in the scaling exponents. That is,
the fact that clear scaling laws are seen all the way across the fine scales indicates that noise
is not propagating much across the time scales.

To further investigate the impact of noise to the presented conclusions, the analysis
is repeated for the Vis series with various levels of added noise. As an estimate, the SNR
for the measured Vis series is calculated to be 86 by treating frequencies above 1/1000 Hz
as white noise (in accordance with the approximate frequency, where the spectra begins
to flatten). The signal-to-noise ratio SNR of the measured signal is then progressively
deteriorated by adding increasing levels of white Gaussian noise. It can be seen in Figure 14
that all scaling exponents (m, n, α, µs, and µTA) are approximately constant for SNR as
low as 40. Similarly, the −2 scaling in PDF(Vis) persists for SNR as low as 40 (Figure 15).
The SNR associated with the instrument is much higher than the SNR at which the scaling
laws no longer hold, indicating that sensor uncertainties will not impact the conclusions
presented here.
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Figure 14. Spectral exponents m and n for the slow and intermediate scaling regimes as functions of
SNR (left). Cluster exponent α, intermittency exponents µs and µTA, and scaling exponent for the
laminar phase PDF γ as functions of SNR (right).
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Figure 15. Signal amplitude PDFs for Vis with various SNR. Clear −2 scaling is present for SNR as
low as 40.

5. Discussion and Conclusions

A preliminary analysis of the ability of RH and k, putative variables akin to the forma-
tion and breakup conditions of fog, respectively, to explain the variability in Vis through the
spectra, the squared correlation coefficient, and the magnitude-squared coherence shows
that RH and k play a role in fog occurrence but may not encapsulate its full dynamics.
For the slow time scales (>1 d), the spectra for Vis exhibit a slower decay rate than either
RH or k, which could indicate the presence of a process perhaps of meso and synoptic scales.
When plotted against Vis, RH appears to be correlated to Vis (R2 = 0.63), while k presents
as a threshold where fog occurrence (low Vis) appears to coincide most with low k. The co-
herence analysis indicates that although there are certain scales where k and RH might be
reasonable predictors of Vis, the stochastic behavior in Vis cannot fully be explained by
RH, k, or a linear combination of the two.

Although not able to fully explain fog occurrence, RH and k bounds many stochastic
features of Vis, including its spectral exponent n, clustering exponent α, and the growth
of its block entropy slope. For intermediate and fine time scales (scales < 1 d), the spec-
tral exponent of Vis (n = 1.64) is bounded by that of k (n = 1.60) and RH (n = 1.93).
Similarly, the cluster exponent of Vis (α = 0.25) is bounded by that of k (α = 0.26) and
RH (α = 0.24). Lastly, the slope of H(n) with n for Vis is bounded by RH and k for n > 1.
Overall, the combined TA series RH1k0 reflected behavior similar to that of RH and k
(i.e., in its spectral exponents, cluster exponent, intermittency exponent, and laminar phase
duration distribution scaling) but did not perform significantly better than either RH or k
in reproducing the stochastic features of Vis. These observations suggest that the statistics
of fog are affected by those of saturation for the formation and those of turbulence for the
breakup but that a linear combination of the two is too simplistic to capture the dynamics
of fog.

The intermittent nature of fog was then analyzed by hypothesizing that fog is gov-
erned by one of the known intermittency models, which would inform future studies on
whether and how it can be modeled. Out of the four intermittency models considered
(PM1-3I and on–off), the Vis series under study presents features of PM3I in its power
spectrum scaling (which approaches −1/2 as f → 0), signal amplitude distribution scaling
(a power law decay with an exponent of −2 over almost a decade), and laminar phase
duration distribution scaling (a power law decay with an exponent of −3/2 for l < 24 h).
These features were not observed in the RH or k series. More generally, PM3I can be viewed
as an example of sporadic randomness, which describes systems between purely random
and purely deterministic behaviors. Preliminary analysis of the block entropy growth
based on the TA series indicates sub-linear behaviors consistent with sporadic randomness.
Although limited by the sample length, the slope of H(n) appears to reach a constant
as n increases for all three variables. Qualitatively, PM3I entails a slow accumulation
followed by a random re-injection or relaxation. The intermittency in fog is driven by the
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dynamics of the atmospheric boundary layer, where the atmospheric water vapor slowly
accumulates (the rising limb of the characteristic PM3I processes) under proper moisture
and heating conditions (encoded in RH) and is then ’re-injected’ whenever turbulence
levels are high (and presumed to be stochastic). Identifying the physical origin of this
intermittency remains an open question, as many variables (e.g., meteorological variables,
aerosols, and wave breaking, some of which are interrelated) occurring at various time
scales affect the life cycle of fog.

While intermittent behavior emerges as the system heads to chaotic behavior,
SOC describes the phase transition between an ordered and a disordered state. Here,
the ordered states are the no-fog phases, while the disordered states are fog intensities
(represented here by the Vis time series). In finite systems, the critical point between
second-order phase transitions is smoothed out over a small interval, so the coexistence
between some features of no-fog phases (high k) and the presence of fog could then indicate
that the system is at criticality. The integral time scales associated with each variable are
calculated and presented in Table 3. For the full series, the integral time scale for k (10.3 h)
appears to be slightly longer than that of RH (7.6 h) and Vis (8.0 h). For the binary TA series,
the integral time scales for all three variables are commensurate, ranging from 6.9 to 7.6 h
such that there seems to be a single relaxation time scale that governs the token formation
and breakup process of fog, at least in their clustering tendencies.

Table 3. Integral time scales of the full and TA series in hours.

RH k Vis

Full 7.6 10.3 8.0
TA 7.6 7.1 6.9

Thus, a simplistic physical model that lends itself to such phase transitions and
criticality emerges where the activation mechanism for fog arises from thermodynamic
interactions while the deactivation mechanism arises from turbulence. For fog events
to occur, an air mass must become saturated near the earth’s surface, and a sufficient
amount of fog condensation nuclei (e.g., sea salts in marine fog) must be present to generate
small airborne water droplets (1–30 µm in diameter) that remain suspended. Turbulence
(and possibly background winds, which are related to k) then serves as the destructive or
deactivating mechanism that dissipates fog. That is, fog is ‘deactivated’ if the turbulence
becomes strong enough, and ‘activated’ if turbulence is weak enough, provided that air is
saturated and condensation nuclei are present. The ensuing dynamics encapsulating these
arguments may be expressed by [57]

dA
dt

=
A
τo
[αo(1− A)− βo], (12)

where A = 0 is a no-fog state, A = 1 is a full fog (or Vis = 0), τo reflects the fog formation
time, αo is related to the thermodynamic state for fog formation (e.g., αo = 0 for low RH
and unity for RH = 1), and βo is related to k (βo = 0 for low k and βo = 1 for high k).
This system exhibits two equilibrium states: A = 0 (no fog) and A = 1− βo/αo (fog).
The activation phase occurs through αo (or RH) and the deactivation phase is associated
with a correlated random βo (linked to k). In the absence of turbulence (βo = 0) but
for finite αo, A will gradually increase until steady-state dA/dt = 0 conditions prevail
(A = 1). These conditions are sporadically ’broken’ by either a small αo (thermodynamic
considerations no longer support fog such as advection or entrainment of dry or warm
air) or a large βo (high level of turbulence breaking up the fog). Fog formation necessitates
βo/αo < 1. Other mechanisms that dissipate fog beyond turbulence not considered here
but worth investigating in future studies include radiation, lack of water vapor sustained
in the atmosphere, particle coalescence, or loss of particles near the ground that could serve
as condensation nuclei (and all impact αo to a leading order).
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The aim of this paper was to investigate whether SOC describes fog occurrence is
based on its universal stochastic patterns in the form of power laws and scale invariance
(in time or space or both) in complex systems. The current Vis series exhibits power laws
in its amplitude distribution, spectra, clustering, and laminar period duration distribution,
permitting an evaluation of the relation between the measured exponent of the TA spectra m
and the exponent of the laminar period duration scaling γ expected for an SOC system
at criticality (m = 3− γ). This SOC relation was observed in Vis and in RH only after
intermittency corrections (m = 3− γ− µ). In RH, this was achieved with the intermittency
coefficient calculated from the full series (µ = µs), while incorporating µTA calculated from
the TA series overestimates the measured m. In Vis, intermittency correction from the
TA series (µ = µTA) was needed to achieve the SOC relation. These observations further
suggest that fog events, or the underlying formation mechanisms associated with RH, could
be SOC processes, albeit the eduction of information needing intermittency corrections.

In celebration of Dr. Herring’s career and life work in geophysical fluid dynamics [78,79],
stochastic approaches to turbulence [80,81], and the intermittency of high Reynolds number
turbulence in particular, this paper presents a statistical analysis of fog and two of its
underlying atmospheric variables—turbulent kinetic energy and relative humidity—in
relation to its intermittency and self-organized critical behavior. Overall, this study iden-
tified the qualitative dynamical features of fog (through its visibility time series) and of
the two variables that govern its formation and dissipation. Although not diagnostic,
phenomenological properties of PM3I were observed in the Vis series, which may be more
generally described by a sporadically random process. The results presented also conform
with elements of self-organized criticality in its on–off and off–on switching properties.
These features and similarities to known dynamical models in literature can be sought in
future modeling efforts to reproduce the stochastic properties of fog in a broad range of time
scales or as validation. Since many atmospheric variables and physical mechanisms affect
the formation, duration, and dissolution of fog, the physical origin and exact analogy to
SOC or PM3I, especially under different fog-formation conditions, remain an open question
suggested for future inquiries.
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