
PHYSICAL REVIEW FLUIDS 7, 044603 (2022)

Profiles of high-order moments of longitudinal velocity explained
by the random sweeping decorrelation hypothesis
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Under the assumptions that the random sweeping decorrelation hypothesis applies and
that the velocity statistics are near Gaussian, the logarithmic variation of high-order
moments of longitudinal velocity with distance from a boundary in the inertial region
(where the logarithmic law holds for the mean longitudinal velocity) is explained by the
existence of a −1 power law in the longitudinal velocity spectrum. During the idealized
horizontal planar array study for quantifying surface heterogeneity, measurements and
profiles of longitudinal velocity were collected within the first meter from the surface
under mild atmospheric thermal stratification. These measurements show good agreement
with the proposed theory. Further investigation into the validity of the random sweeping
decorrelation hypothesis reveals that it is not strictly valid across all scales but can be
viewed as operationally viable due to inherent cancellation in its interaction terms. More
importantly, deviations from the random sweeping decorrelation hypothesis predictions
appear consistent across the logarithmic region and captured by a quasiconstant, suggesting
possible avenues for correction in the modeling of high-order moments.
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I. INTRODUCTION

Arguably, one of the most well-known universal features of high Reynolds number wall-bounded
turbulence is the logarithmic law [1–3] that describes the profile of the mean longitudinal velocity
with vertical distance z from a solid boundary in the inertial or logarithmic region,

u

u∗
≡ u+ = 1

κ
ln(z+) + B, (1)

where u is the streamwise velocity, an overline denotes ensemble averaging (approximated by
time averaging), the + superscript denotes normalization by the friction (or shear) velocity u∗ and
kinematic viscosity ν, κ is the von Kármán constant, and B is a constant that varies with surface
roughness but is assumed to be a constant for smooth surfaces. Ample empirical evidence has
supported this log-scaling as reviewed elsewhere [4,5].
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In canonical wall-bounded flows, a logarithmic law for the variance of streamwise velocity u′2
coexists in the same region, proposed by Townsend [6] and many others [3,7] as

u′2+ = B1 − A1ln

(
z

δ

)
, (2)

where u′2+ = u′2/u2
∗ is the normalized longitudinal velocity variance, δ is an outer length scale

(i.e., the boundary layer thickness or the pipe radius in canonical boundary layer flows), and B1

and A1 are similarity constants. This scaling has been theorized based on a number of similarity
arguments (e.g., the attached eddy hypothesis) and solutions to spectral budget models [6–10], and it
is supported by numerous experimental studies [3,11–14]. Experiments have shown that the constant
A1 may vary with Reynolds number [15,16] and approaches ≈1.25 [3,4,7,17] at high Reynolds
numbers, while B1 is dependent upon flow conditions and geometry and thus is not expected to be
universal.

Whether high-order statistics u′2p
+ = u′2p/u2p

∗ also scales with ln(z/δ) has been a recent subject
of study given its relevance in evaluating large-eddy-simulation subgrid modeling and postprocess-
ing [18], and in the synthetic generation of turbulence in wind energy design that indicates a need to
consider moments more complicated than the standard deviation [19]. Meneveau and Marusic [20]
proposed that when u′ assumes a Gaussian distribution and the eddies are noninteracting,

(u′2p
+

)1/p = Bp − Apln

(
z

δ

)
, (3)

where p � 1 is the moment order, Ap = A1[(2p − 1)!!]1/p = A1[π−1/22p�(p + 1/2)]1/p, and �(·)
is the gamma function.

Recently, Katul et al. [21] showed that this generalized logarithmic law in high-order moments
of longitudinal velocity can be explained by a combination of the random sweeping decorrelation
hypothesis (RSDH) and a k−1

x power-law scaling in the near-universal shape of the energy spectrum
of the longitudinal velocity Eu(kx ) between δ−1 � kx � z−1, where kx is the streamwise wave
number. The premise is that when the u′ statistics are approximately Gaussian and the RSDH
holds (where the turbulent eddies are noninteracting and remain undistorted), then the high-order
moments of the longitudinal velocity (p > 1) can be related to Eu(kx ) (for p = 1). Katul et al.
[21] examined data from a single sampling height above a uniform ice sheet under near-neutral
conditions to investigate the assumptions required for the RSDH, and they found that the hypothesis
is not strictly valid but can be viewed as operationally viable. However, this work did not evaluate
predictions by Eq. (3).

Here, high-frequency (0.1 kHz) multilevel near-surface (z � 1 m) longitudinal velocity data
acquired above the salt flats of Utah are used to examine the link between Eu(kx ) and predictions
from Eq. (3) across the logarithmic layer. A unique feature of the experiment here is that the −1
power law persists in Eu(kx ) as a result of the proximity to the ground while maintaining very high
Reynolds numbers. Further, the theory proposed in Ref. [21] is extended to explore its applicability
across weakly stratified conditions by allowing the intersection of the −1 and −5/3 spectral scaling
ranges to shift with atmospheric stability. This shift would account for cases in which the effects of
thermal stratification result in a change of the eddy size characterizing the break point between the
−1 and the −5/3 power-law scaling, but they are not strong enough to introduce different coherent
structures that would alter the k−1

x scaling in Eu(kx ).

Overall, good agreement between measured and predicted u′2p
+

from the RSDH was seen for
the data analyzed, suggesting that the proposed expression from Katul et al. [21] is an acceptable
hypothesis even for the atmospheric surface layer where non-neutral stability conditions prevail.
Namely, the model appeared to be able to predict Ap well under the thermal stratification considered,
but it failed to capture Bp under near-neutral conditions for higher moments and under unstable
conditions for all moments. To investigate this deviation and the underlying theory, inherent
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assumptions of the RSDH were examined in detail in physical space. While violations of the
RSDH assumption were observed, inherent compensatory effects similar to those examined in
Ref. [21] seem to explain the functional utility of the RSDH. Further investigations reveal more
or less consistent deviations from the RSDH across the logarithmic layer that could be modeled and
corrected for. Notably, at scales larger than ≈60z, the RSDH appears to be applicable but with a
constant offset, and at scales bounded by z and ≈60z, the deviations of the measured data from the
RSDH prediction can be captured by a quasiconstant A1/m

m that appears to be insensitive to thermal
stratification.

II. THEORY

A. Random sweeping decorrelation hypothesis

The random sweeping decorrelation hypothesis (RSDH) dates back to Tennekes [22], who inves-
tigated the relation between the Eulerian and the Lagrangian velocity frequency spectra, and who
assumed that small eddies (those at least one order of magnitude smaller than the energy-containing
eddies) are transported or “swept” past an Eulerian observer by the energy-containing eddies without
any dynamical distortion. As mentioned by Tennekes, this picture is analogous to Taylor’s frozen
field hypothesis, which suggests that turbulent eddies are advected by the mean streamwise velocity
without changes to their properties [23]; the distinction here is that the transport of the small scales
is related to the energy content of the larger eddies under the RSDH, as opposed to the mean flow.
Tennekes found that if this “sweeping” occurs, then the large-scale advection gives the dominant
contribution to kinetic energy in the inertial subrange; that is, motion in the smaller scales is a
result of the kinetic energy of the larger scales. Under this framework, the kinetic energy per unit
mass of the larger scales u′2

i , where the subscripts i = 1, 2, 3 denote the longitudinal, lateral, and
vertical directions, respectively, should also be a relevant parameter in the dimensional analysis of
the inertial subrange in the Eulerian framework, in addition to the mean turbulent kinetic energy
dissipation rate ε and wave number k (or equivalently frequency f ) as proposed by Kolmogorov
[24]. Thus, the Eulerian frequency spectra of any velocity component u′2

i may be described as

E (2)
ui

(k) = αiε
2/3u′2

i k−5/3, (4)

where αi is an unknown constant and
∫ ∞

0 E (2)
ui

(k) dk = u′4
i is the power spectrum of order 2.

A similar problem was also studied by Dutton and Deaven [25], who investigated the extension of
Kolmogorov’s dimensional arguments [26] to spectra of algebraic powers of velocity fluctuations:

(
up

i − up
i

)2 = u2p
i − up

i

2 =
∫ +∞

−∞
E (p)

ui
(k) dk, (5)

where E (p)
ui (k) is the power spectrum of order p. Dutton and Deaven suggested that if Kolmogorov’s

dimensional arguments in the inertial subrange [26] also hold for high-order spectra, then

E (p)
ui

(k) = Cpε
2p/3k−(2p+3)/3, (6)

where Cp are constants to be determined (with C1 being the Kolmogorov constant). That is,
E (1) ∼ k−5/3, E (2) ∼ k−7/3, E (3) ∼ k−3, etc. From high-order spectra up to p = 4 for all velocity
components measured at four different elevations above the land surface (in the atmospheric surface
layer, the atmospheric boundary layer, and for clear air turbulence conditions), they found that the
high-order spectra appear to follow a −5/3 power law regardless of p, a significant departure from
the predictions of Eq. (6), suggesting that the inertial subrange behavior is defined by more than
only ε and k.

Motivated by the results of Dutton and Deaven [25], Van Atta and Wyngaard [27] assumed
Gaussian statistics for u′

i and found that for the inertial subrange,

E (p)
ui

(k) = α(p)u′2
i

p−1
Eui (k), (7)
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where α(p) = p2 × 1 × 3 × 5 × · · · × (2p − 3). In other words, when the u′
i statistics are approx-

imately Gaussian and the RSDH holds, the high-order spectrum E (p)
ui (k) (for p � 2) is dependent

on the sweeping effect (u′2
i ) and the first-order spectrum Eui (k) (where p = 1). Specifically, the

scaling coefficient α(p) arises from Gaussian statistics, while the scaling law itself is dictated by the
sweeping. That is, non-Gaussian effects would manifest as a shift to the scaling coefficients but not
the law itself. Atmospheric turbulence measurements taken over the ocean appear to confirm Eq. (7)
[27].

B. Extension to high-order moments

As in Katul et al. [21], the high-order statistics for the longitudinal velocity u′2p =∫ ∞
0 E (p)

u (k) dk + u′p2
are interpreted with the RSDH [Eq. (7)] to give

u′2p = α(p)[u′2]p−1
∫ ∞

0
Eu(k) dk + u′p2

. (8)

For Gaussian statistics, it can be shown that the term u′p2
is identically zero for odd p, and it has a

value of �((1+p)/2)2
√

π�(1/2+p) u
′2p for even p. Thus, the term u′p2

can be absorbed as a corrective coefficient

γ (p) =
{

1 for odd p,(
1 − �((1+p)/2)2

√
π�(1/2+p)

)−1
for even p

(9)

such that Eq. (8) becomes

u′2p = γ (p)α(p)[u′2]p−1
∫ ∞

0
Eu(k) dk, (10)

so that the high-order moments (p > 1) now depend on the sweeping velocity and the integral of
the first-order longitudinal velocity energy spectrum. [Note that for even p, γ (p) approaches 1 from

its p = 2 value of 3/2 by roughly 2−p as p increases, so that contributions from the u′p2
diminish

rapidly and are negligible by p = 4.] To arrive at an analytic expression, consider a simplified shape
as illustrated in Fig. 1 for Eu(k). This idealized model spectrum is similar to that assumed in Katul
et al. [21], which has been found to be a solution to spectral budget models [8,10,28,29]. Here, the
intersection between the −1 and −5/3 scaling regions is taken to occur at a scale βz, where β is a
constant needed to account for variations that could arise due to thermal stratification. Distinguished
by three lengthscales: δ, βz, and the Kolmogorov microscale η = (ν3/ε)1/4, this model spectrum is
described by the following regions:

(i) Eu(k) = C1u2
∗δ for 0 � k � 1/δ. This relation is chosen following the reasoning of Katul

et al. [21] given the uncertainty in the scaling laws that govern this region and the simplicity of this
scaling.

(ii) Eu(k) = C1u2
∗k−1 for 1/δ � k � 1/(βz). For near-neutral conditions, this scaling exists for

1/δ � k � 1/z (β = 1) as predicted originally by Tchen [30,31] and by others (e.g., the attached
eddy hypothesis of Townsend [6]).

(iii) Eu(k) = Coε
2/3k−5/3 for 1/(βz) � k � 1/η in accordance with Kolmogorov scaling [26],

where Co = (18/55)Cκ ≈ 0.5 and Cκ = 1.55 are empirically determined coefficients [32].
Under the assumption that production P balances dissipation ε at any z and when Eq. (1)

holds, dU/dz = u∗/(κz) so that P = ε = u2
∗dU/dz = u3

∗/(κz). Combining this estimate for ε and
continuity at k = 1/(βz) then defines C1 = Coκ

−2/3β2/3 so that the model spectrum is completely
defined by u∗, β, and established constants κ and Cκ . Under near-neutral conditions, β = 1.

Integration of this model spectrum results in∫ ∞

0
Eu(k) dk = u′2 =

∫ 1/δ

0
C1u2

∗δ dk +
∫ 1/(βz)

1/δ

C1u2
∗k−1 dk +

∫ 1/η

1/(βz)
Coε

2/3k−5/3 dk. (11)
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FIG. 1. Illustration depicting the idealized shape and scaling regimes of the model spectrum for Eu(k). The
coefficient β is used to account for any shifting due to thermal stratification of the break point between the
k−1 and k−5/3 scaling regions. Continuity at 1/(βz) then defines C1 = Coκ

−2/3β2/3. It should be noted that u′2p

depends on the integrated spectrum, thereby making it less sensitive to nonsmooth transitions between scaling
regimes.

Integrating, substituting ε = u3
∗/κz, and normalizing by u2

∗ gives

u′2

u2∗
≡ u′2+ = C1

[
1 − ln

(
βz

δ

)]
+ 3

2
C1

[
1 −

(
η

βz

)2/3]
, (12)

which can be reduced to the form of Eq. (2) when

A1 = C1 (13)

and

B1 = A1

[
5

2
− 3

2

(
η

z

)2/3

β−2/3 − ln(β )

]
. (14)

With Re∗ = z+ = zu∗/ν, B1 can also be expressed as

B1 = A1

[
5

2
− 3

2

κ1/6

Re1/2
∗

β−2/3 − ln(β )

]
. (15)

As Re∗ → ∞ under neutral conditions (i.e., β = 1), A1 ≈ 0.9 and B1 ≈ 2.25 with κ = 0.4.

Meneveau and Marusic obtained A1 = 1.19 and B1 = 1.71 by fitting Eq. (2) to measured u′2+

at Re∗ ≈ 1500. As summarized and discussed in Ref. [21], although not identical, this value
of A1 compares reasonably (within 20%) to C1 obtained independently from a number of other
experiments [28,33–36], which ranged from C1 = 0.9 to 1.1.

Equation (10) can then be written as

u′2p = γ (p)α(p)u′2 p−1
u2

∗

[
B1 − A1ln

(
z

δ

)]
, (16)

where again α(p) and γ (p) can be defined for Gaussian statistics and they do not vary with z, and
B1 and A1 are defined as functions of C1 (which is in turn defined as a function of β and well-known
constants κ and Co) following Eqs. (13) and (15). That is, the logarithmic scaling in high-order
moments u′2p can be explained by a combination of the RSDH and the logarithmic law for the
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streamwise turbulence intensity u′2, which was shown to be a consequence of a k−1 scaling in the
longitudinal velocity spectrum Eu(k).

Finally, (u′+2p)1/p can be estimated from Eq. (16) by further substituting u′2 = u2
∗[B1 −

A1ln(z/δ)], normalizing by u2p
∗ , and raising to a power of 1/p:

(u′2p
+

)1/p = γ (p)1/pα(p)1/p

[
B1 − A1ln

(
z

δ

)]
(17)

so that this expression has the same form as Eq. (3) with Bp = γ (p)1/pα(p)1/pB1 and
Ap = γ (p)1/pα(p)1/pA1.

The validity of Eq. (17) within the logarithmic layer will be tested with data measured within
1 m above the salt flats of Utah under varying thermal stratification. Due to the measurements’
proximity to the ground, the thermal stratification is not expected to deviate significantly from
neutral conditions so that the measured spectra should follow the ideal shape assumed in Fig. 1,
allowing for direct application of the presented theory that includes the β parameter.

C. Evaluation of the random sweeping decorrelation hypothesis

To investigate the validity of the RSDH, it is convenient to conduct the analysis in physical rather
than spectral space using the high-order structure functions as discussed by Praskovsky et al. [37].
The high-order structure function Dm

u (r) is defined as

Dm
u (r) = [u′m(x + r) − u′m(x)]2, (18)

where r is the separation distance along x, in accordance with Dutton and Deaven [25] (note
that this is different from the traditional nth-order structure function defined as Du,n(r) =
[u′(x + r) − u′(x)]n).

By using the velocity difference �u = u′(x + r) − u′(x) to replace u′(x + r) in Eq. (18) and
expanding,

Dm
u (r) = [(u′ + �u)m − u′m)]2

= m2u′2m−2�u2 + m2(m − 1)u′2m−3�u3 + m2(m − 1) 1
12 (7m − 11)u′2m−4�u4 + · · · . (19)

If the RSDH is valid, then the large scale and inertial range scales are statistically independent,
i.e., smaller eddies experience advective “sweeping” by the larger eddies with no dynamical
distortion. Then, with u′ a characteristic velocity for the large-scale eddy motion and �u for the
inertial subrange eddy motion, under the RSDH, quantities involving u′k�ul reduce to u′k �ul for
k > 1 and l > 1 so that for m > 2,

Dm
u = m2u′2m−2 �u2 
(m, u′k,�ul ), (20)

where


(m, u′k,�ul ) = 1 + (m − 1)
u′2m−3 �u3

u′2m−2 �u2
+ · · · . (21)

Praskovsky et al. [37] showed that for fine-scale turbulence (with small r) at sufficiently high Re,

(·) ≈ 1 so that Eq. (20) reduces to Dm

u = m2u′2m−2 �u2. This suggests that the scaling laws
describing Dm

u (r) in the inertial subrange are set by not only ε and r (used in defining �u2 in
accordance with Kolmogorov [26]), but also the large-scale energy content u′2m−2, consistent with
the essence of the RSDH.

The scalewise application of the RSDH can be investigated with two measures as introduced by
Praskovsky et al. [37]. One is a measure that directly follows Eq. (20) and the definition of 
(·) by
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normalizing Dm
u (r). The resulting expression,

dm(r) = Dm
u (r)

m2u′2m−2 [u′(x + r) − u′(x)]2
, (22)

will be a direct measure of whether there is sufficiently high Re and separation between the large
and small scales. Since 
(·) → 1 in this limit, plotting dm(r) will show the range of validity of the
RSDH for the different stability regimes, moment order m, and separation r. As discussed, if the
RSDH is valid across all scales, then dm(r) = 1 at all r. Compared to Dm

u (r), the measure dm(r) is
less sensitive to distortions introduced by Taylor’s frozen field hypothesis as such distortions will
affect both the numerator and the denominator of Eq. (22).

Another measure proposed by Praskovsky et al. [37] is

gm(r) = 1

m2u′2m−2

{
[u′m(x + r) − u′m(x)]2

[u′(x + r) − u′(x)]2

}
. (23)

Unlike dm(r), the measure gm(r) is not directly related to the problem at hand, but the same
assumptions leading to dm(r) = 1 also lead to gm(r) = 1 [37]. Since there is only one averaging
operation in gm(r), it will not be affected in the same way by distortions introduced by the usage of
Taylor’s frozen turbulence hypothesis as dm(r).

The measures dm(r) and gm(r) will be used to examine the validity of the RSDH across the
measured dataset at all sampled heights and under all stability conditions. Although dm(r) = 1 and
gm(r) = 1 are expected at all scales if the RSDH holds, any absence of a significant r dependence
[i.e., if dm(r) and gm(r) approach a constant 
= 1] implies that 
(·) may be treated as a constant and
the RSDH predictions of the scaling laws are not significantly altered.

III. EXPERIMENTAL DATA

Measurements of u in the first meter above ground were sampled at the Surface Layer Turbulence
and Environmental Science Test (SLTEST) facility in the western deserts of Utah, USA, as part of
the idealized horizontal planar array study for quantifying surface heterogeneity (IPAQS) [38]. The
SLTEST site is known for its low surface roughness, relatively predictable diurnal wind patterns in
the early summer, and long unobstructed stretches of land in the dominant wind directions. Once
the floor of Lake Bonneville, the surface of the SLTEST site naturally renews almost every year
when the high water table recedes in late spring, leaving behind a stable crust that is smooth and
essentially dust-free with an aerodynamic roughness that ranges from submillimeter to less than
≈5 mm [39,40]. These unique characteristics make the SLTEST site particularly suitable for probing
high Re turbulent boundary layers with near-idealized boundary conditions.

The data were collected with nanoscale thermal anemometry probes (NSTAPs) operated in
constant-current anemometry mode and sampled at 100 Hz. The sensing element of the NSTAP
is a platinum wire filament 100 nm in thickness, 2 μm in width, and 60 μm in length [41–43],
providing high spatial resolution that ensures minimal spatial filtering effects. Five NSTAPs were
deployed on an approximately logarithmic scale at heights z = 0.0625, 0.125, 0.25, 0.5, and 1.0 m
above the ground during a three-day intensive sampling period (18–20 June 2018). A triaxial sonic
anemometer (Campbell Scientific CSAT3) along with an adjacent fine-wire K-type thermocouple
sampling at 20 Hz was stationed approximately 10 m west of the measurement tower at a height
of 2 m. The tower and probe setup are shown in Fig. 2, and more details can be found elsewhere
[44,45].

Overall, 92 30-min records were collected, 15 of which occurred when the incoming wind
aligned with the sensor direction, as verified by the sonic anemometer. Trends associated with
a varying freestream velocity were then subtracted from the raw fluctuating signal following
the methodology of Hutchins et al. [46], and the signal was high-passed at a frequency of
300−1 Hz. Stationarity of the mean longitudinal velocity u and the turbulence intensity u′/u at each
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FIG. 2. Image of the 1-m measurement tower at the SLTEST site, which is known for its canonical nature
due to unobstructed fetches of land with low surface roughness (left). Premultiplied probability density function
(PDF) of normalized velocity fluctuations for data sampled at z = 1 m under near-neutral conditions for
moments of order 2p = 2, 4, 6, 8 (right). Each moment is normalized by Kp such that the maximum value
is unity for clarity. Note the decay of the tail is sufficiently fast so that the estimation of the higher-order PDFs
is reasonably captured with the measurements.

measurement height were then assessed by using the reverse arrangement test and the runs test with
a 95% confidence interval [47]. Nonstationary effects were observed in five records, which were
subsequently discarded.

For each 30-min record, calibration of the sensors was achieved via collocated Pitot tubes
that provided in situ mean values. Simultaneous temperature measurements were also taken with
adjacent T-NSTAP’s (the temperature version of the NSTAP) calibrated with collocated E-type
fine-wire thermocouples. An instantaneous application of the temperature compensation scheme
proposed by Hultmark and Smits [48] was then implemented to account for the effects of changing
ambient temperature. More details regarding the calibration procedure can be found in Huang et al.
[44].

Lastly, the error due to limited statistical convergence of high-order moments (u′2p)+
1/p

is diag-
nosed. Due to unusually high estimated statistical convergence error, one more 30-min record was
removed. As a representative case, the data sampled at z = 1 m (z+ ≈ 1.7 × 104) are considered,
and the errors calculated for each moment under each stability regime are featured in Table I. Given
the estimated statistical convergence errors, the highest moment considered in the following analysis
will be 2p = 8. Following the approach described in Meneveau and Marusic [20], the premultiplied
probability density functions (PDFs) for 2p = 2, 4, 6, 8 at z = 1 m under near-neutral conditions
are shown in Fig. 2 (right). The amount of data reasonably captures the moment (commensurate
with the area under the curve) up to 2p = 8 in the sense that the decay of the tails is sufficiently fast.

The atmospheric stability condition of each record was assessed with two parameters: the Monin-
Obukhov stability parameter ζ = z/L and the flux Richardson number R f . The Obukhov length L

TABLE I. Statistical convergence error estimates (%) for (u′2p)+
1/p

sampled at z = 1 m.

2p

2 4 6 8 10

Unstable % 9 10 12 16 22
Near-neutral % 9 11 16 25 41
Stable % 7 10 18 31 48
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is defined as

L = − u3
∗

κ (g/θv )w′θ ′
v

, (24)

where u∗ =
√

−w′u′, g is the acceleration due to gravity, w′, u′ and θ ′
v are the wall-normal velocity,

streamwise velocity, and virtual potential temperature fluctuations, respectively, and θv is the mean
virtual potential temperature. The records were classified as unstable when ζ < −0.1, near-neutral
when |ζ | � 0.1, and stable when ζ > 0.1. Note that the magnitude of ζ values is small due to
the proximity to the boundary (that is, ζ values are small since ζ = z/L and z < 1 m). The flux
Richardson number R f is defined as

R f = (g/θv )w′θ ′
v

w′u′(dU/dz)
, (25)

and it is typically negative for unstable conditions, near-zero for neutral flows, and positive for stable
flows. The two stability representations are related by R f = ζ/φM (ζ ), where φM is the stability
correction function for momentum [49,50].

The resulting nine records under study are summarized in Table II with mean flow parameters and
stability classifications calculated relative to the sonic anemometer. The P was estimated assuming
a steady state and horizontally homogeneous conditions and choosing a coordinate system aligned
with the mean wind as P = −u′w′ ∂u

∂z . The ε was separately estimated as

ε = 1

C3(Reλ)

�u3

r
(26)

with the Re-dependent empirical constant C3 = −0.8 + 8.45 Re−2/3
λ , where Reλ =

√
u′2λ/ν and

λ =
√

15νu′2/ε is the Taylor microscale and iterated against Eq. (26). The mean velocity profile
used in calculating P and R f was given by the NSTAP measurements and evaluated at z = 2 m.

The boundary layer height δ was not directly measured and estimated based on the thermal
stratification. Under near-neutral to slightly stable conditions, a δ ≈ 60 m was determined from
comparing measured u′2 profiles to similarity formulations proposed by Marusic and Kunkel [17]
as discussed in Huang et al. [44]. Under stable conditions, a δ ≈ 30 m was estimated from the for-
mulation δ2 ≈ √

3κR f (u∗L/| fc|), where fc = 2
 sin(φ) ≈ 1 × 10−4 s−1 is the Coriolis parameter,

 is the angular velocity of Earth’s revolution, and φ is the site latitude [51]. For early morning
hours but mildly unstable conditions, δ ≈ 350 m was estimated from the formulation δ = 0.2u∗ f −1

c
[52]. Although this formulation was derived for slightly stable to near-neutral conditions, this
approximation is plausible given that the unstable cases examined here are close to neutral stability
and are sampled in early morning hours.

The PDF(u′/σu) for each sampled height and stability condition are presented in Fig. 3, where σ 2
u

is the velocity variance. Values of skewness Su = u′3/σ 3
u and kurtosis Ku = u′4/σ 4

u are also included
in the figure. It can be seen that the bulk of the statistics does not deviate appreciably from Gaussian,
but the near-neutral and stable data sets exhibit slight super-Gaussian behavior. This super-Gaussian
behavior has been observed in a number of wind tunnel experiments, but it is in contrast to many
DNS studies that indicate sub-Gaussian behavior in the inertial subrange [20,53–55]. This could
be explained by recent evidence that suggests the extent of the buffer layer may depend on the
Reynolds number δ+ = δu∗/ν and extend to z+ ≈ 3(δ+)1/2 in smooth-wall conditions [3,56]. Under
near-neutral conditions, this places the lowest two measurement heights within the buffer region
where sweeps tend to dominate [54], explaining the increased Su and Ku observed.

Nonetheless, with the onset of the logarithmic layer taken to be z+ = zu∗/ν > 100 [57], the
lowest sampling height of z+ ≈ 850 may be well within the logarithmic region. The equivalent sand
grain roughness was estimated to be ≈2.5 mm with the relation for a zero-pressure-gradient neutral
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FIG. 3. Measured probability density functions (open circles) for the unstable (left), near-neutral (middle),
and stable (right) stability conditions, ensemble-averaged across each 30-min period as listed in Table II and
offset by an arbitrary amount to allow examination of each sampling height. For reference, a zero-mean and
unit variance Gaussian distribution is included (thick solid line), and skewness Su′ and kurtosis Ku′ are also
calculated at each height.

boundary layer [44], so that the lowest sampling height is about 25 times that of the roughness
height. The mean velocity and variance profiles are shown to exhibit logarithmic behavior in the
region 103 < z+ < 104 as shown in Fig. 4.

IV. RESULTS

A. High-order moments

The normalized measured first-order spectra for each stability regime are presented in Fig. 5,
where the normalization is based on u∗ and z. These spectra show a −1 and −5/3 scaling separated
at k ≈ 1/(βz) so that Eq. (12) applies directly. It can be seen that the effects of thermal stratification
are manifested in a shift of the break point between the −1 and −5/3 scaling regions, which is also
encoded in C1 due to continuity at k ≈ 1/(βz) as discussed in Sec. II. Under near-neutral conditions,
the break point occurs at k ≈ 1/z as expected. By inspection, for the spectra obtained under unstable
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FIG. 4. The normalized mean velocity (left axis) and variance (right axis) profiles for unstable, near-
neutral, and stable thermal stratification, averaged across all available 30-min periods for each stability regime.
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FIG. 5. Normalized spectra of the longitudinal velocity Eu(kz)/u2
∗ for the unstable (left), near-neutral

(middle), and stable (right) thermal stratification as a function of normalized wave number kz. For each
thermal stratification, there is a clear separation between the −1 ( ) and the −5/3 ( ) scaling regimes
as indicated by the black vertical dotted line ( ) at k ∼ 1/(βz), with β ≈ 2.5, 1, 0.125 from left (unstable) to
right (stable), respectively. The k = 1/δ cutoff between the 0 ( ) and the −1 scaling regimes is also shown
for each measurement height and denoted by their respective colors.

conditions, the separation is shifted toward scales larger than z at k ≈ 1/(2.5z), and for those under
stable conditions, the separation is shifted toward scales smaller than z at k ≈ 1/(0.125z). The
model spectra (as in Fig. 1) are superposed onto the measured spectra with β = 2.5, 1, 0.125 for the
unstable, near-neutral, and stable conditions, respectively.

To examine the validity of Eq. (7), the measured high-order spectra E (p)
u (k) at z = 1 and 0.0625 m

are plotted against those predicted by the RSDH for p = 2, 3, 4 in Fig. 6 as an example. Similar
trends are observed at all other heights and are not presented. In all cases and order p, the energy
at the large scales is overestimated by the RSDH prediction, consistent with the observation that
assumptions of the RSDH are less valid for the large scales. Under unstable and near-neutral
conditions, it can be seen that the model is able to predict the high-order spectra well in the high-
wave-number range (generally kz > 1). Notably, under mildly stable stratification as p increases, the
RSDH prediction underestimates the measured spectra in the high wave numbers and compensates
for the overestimation in the low-wave-number region.

Measured (u′2p
+

)1/p are shown in Fig. 7 for 2p = 2, 4, 6, 8 and are consistent with a gener-
alized log law in the inertial region, i.e., where the variance (p = 1 case) displays a logarithmic

scaling. For p > 1, predicted (u′2p
+

)1/p was estimated via Eq. (17) and plotted with dashed lines.
Overall, acceptable agreement can be seen between the modeled and measured Ap for all thermal

stratification, which are plotted in Fig. 8 (left). The prediction for Ap as explained by random
sweeping under near-neutral conditions falls close to the prediction Ap = A1[(2p − 1)!!]1/p based on
Gaussian statistics proposed by Meneveau and Marusic [20], which is represented by the solid gray
line. In contrast to the sub-Gaussian behavior seen in Meneveau and Marusic [20], the measured Ap

values here exhibit slightly super-Gaussian behavior, although this curvature may be attributed to
experimental uncertainty.

The predicted Bp values appear to be less robust, with the agreement with measured data
dependent on stability as shown in Fig. 8 (right). The modeled Bp values capture the measured
data well under stable conditions, but they overestimate the measured Bp under near-neutral and
especially under unstable stratification, reflective of the observations in Fig. 6. This may also be a
result of the high sensitivity of Bp values to the value of Ap. In the following section, the validity of
the RSDH under various thermal stratifications will be explored.
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FIG. 6. Normalized high-order spectra of the longitudinal velocity E (p)
u (kz)/u2

∗ for p = 2, 3, 4 under un-
stable (left), near-neutral (middle), and stable (right) thermal stratification as a function of normalized wave
number kz at z = 1 m (top row) and at z = 0.0625 m (bottom row). The colored records represent measured

E (p)
u (k) and the gray records represent the corresponding prediction α(p)u′2 p−1

Eu(k) [Eq. (7)].

B. Evaluation of the random sweeping decorrelation hypothesis

The assumptions inherent to the RSDH are now explored under varying thermal stability to test
its validity. Formulating the RSDH in physical space facilitates an assessment of the independence

FIG. 7. High-order moments of the longitudinal velocity under unstable (left), near-neutral (middle), and
stable (right) conditions for 2p = 2, 4, 6, 8, averaged across available datasets for each thermal stratification.
The dashed lines represent the high-order moments as predicted by Eq. (17).
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FIG. 8. Coefficients Ap (left) and Bp (right) as a function of moment order 2p across the three stability
regimes. The dashed lines represent the coefficients as predicted by Eq. (17), and the gray line represents the
coefficients as predicted by Ap = A1[(2p − 1)!!]1/p.

between u′k and �ul with varying r. As an example, Eq. (19) for m = 2 is given by

D2
u(r) = 4 u′2�u2 + 12u′1�u3 + · · · . (27)

The correlation coefficient ρ�u2,u′2 (r) determined by correlating the series u′2 with the series �u2,
and the coefficient ρ�u3,u′ (r) determined by correlating the series u′ with the series �u3, can then
be determined as a function of r/z to assess the statistical independence between u′k and �ul for
high-order moments. Recall that the RSDH assumes all of these correlations are negligible at all
r. The coefficients ρ�u2,u′2 (r) and ρ�u3,u′ (r) for the data series taken at z = 1 m under near-neutral
conditions are explored in Fig. 9 as an example. The same trend is observed in all other sampled
heights under all stability conditions and they are not presented.

It is evident from Fig. 9 that the correlation coefficients remain significant at all scales, demon-
strating a lack of statistical independence between velocity and velocity increments at high moments
and a violation of the RSDH. However, it can be seen that the odd [ρ�u3,u′ (r)] and even [ρ�u2,u′2 (r)]
ordered coefficients are opposite in sign and similar in value. This suggests some compensatory
mechanisms exist such that even though the underlying assumptions are not valid, the RSDH may
be operationally functional, thus explaining its partial success in predicting the high-order moments
as discussed in the previous section.

To further investigate the scalewise applicability of the RSDH, Fig. 10 presents dm(r) and gm(r)
for the longitudinal velocity measured under unstable, near-neutral, and stable thermal stratification
measured at z = 1 m as a representative case. Similar trends for dm(r) and gm(r) are observed at
other heights and are included in Appendix for completeness. Overall, the scale dependence of
dm(r) and gm(r) means that the RSDH is not impacting all the scales equally and may not be valid
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FIG. 9. Variations of ρ�u2,u′2 (r) and ρ�u3,u′ (r) for z = 1 m under near-neutral stability. Data at all other
sampling heights and thermal stratification show similar trends. The RSDH assumes ρ(r) = 0.
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FIG. 10. Variations of dm(r) (top row) and gm(r) (bottom row) with r/z for m = 2, 3, 4, 5 for data collected
at z = 1 m under unstable (left column), near-neutral (middle column), and stable (right column) conditions.
The RSDH requires dm(r) = 1 and gm(r) = 1 (solid horizontal lines). The ro/z value at which dm(r) and gm(r)
become approximately constant insensitive to increasing r is marked with a vertical dotted line.

across all scales [as discussed, dm(r) = 1 and gm(r) = 1 if the RSDH holds], and these distortions
seem to be more evident as the moment increases.

At small scales (as r/z → 0), gm(r) appears to approach a value of 1 as predicted by the RSDH
for all stability conditions. For dm(r), the unstable condition shows an approach to 1 as r decreases,
while the dm(r) > 1 seen in the near-neutral and stable cases is a signature of intermittency
corrections.

On the other end, both dm(r) and gm(r) tend toward a constant and exhibit weaker scale depen-
dency at large scales (as r/z → ∞). This suggests that even though the RSDH is not entirely correct
for the large scales, 
(·) may be treated as a constant past a certain separation, and the scaling
laws predicted by the RSDH for Dm

u (r) from Du(r) [or equivalently E p
u (k) from Eu(k)] are not

altered significantly. Generally, it can be seen that dm(r) approaches a value closer to 1 under stable
conditions at all heights compared to the unstable or near-neutral stratification [for data at z = 1 m,
dm(r → ∞) ≈ 0.4 under unstable conditions, dm(r → ∞) ≈ 0.5 under near-neutral conditions,
and dm(r → ∞) ≈ 0.8 under stable conditions]. This suggests that the RSDH overpredicts the data
under unstable or near-neutral stratification more so than it does under stable stratification, which
could explain the variations in Bp observed in Fig. 8.

Here, the separation at which this scale independence occurs, ro, was determined by first smooth-
ing dm(r) and gm(r) using a binning method, and then calculating for r when |d (dm(r))/d (r/z)| <

0.001 for all moment orders considered (not shown). Under this somewhat arbitrary threshold,
the resulting ro values for each height and stability condition are presented in Fig. 11. Overall,
ro values for dm(r) and gm(r) are comparable, and it can be seen that ro appears well-collapsed with

10
-4

10
-3

10
-2

10
-1

10
1

10
2

10
-4

10
-3

10
-2

10
-1

10
-2

10
0

FIG. 11. The separation ro at which scale independence of dm(r) (solid symbols) and gm(r) (open symbols)
occur, normalized with distance from the wall (left) and with outer flow scaling (right). The variations of ro/δ

(right) are presented only for completeness to illustrate outer-layer size effects for ro.
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FIG. 12. Left column: measured Dm
u (r) ( ) and m2u′2m−2Du(r) ( ) against r/z for m = 2, 3, 4, 5

bounded by z < r < ro under near-neutral stability conditions at z = 1 m. Right column: Variations of
measured Dm

u (r) against m2u′2m−2Du(r) for m = 2, 3, 4, 5 bounded by z < r < ro under near-neutral stability
conditions at z = 1 m. The dashed lines represent a slope of 1 as predicted by the RSDH. The solid black lines
are linear fits to the data to calculate Am.

distance-from-the-wall scaling with no discernible sensitivity to the stability condition. The scale
independence occurs at ro/z ≈ 60, which is higher than the ro/z ≈ 5 value reported in Katul et al.
[21] for dm(r). While the exact values of ro are sensitive to the threshold chosen to calculate it [i.e.,
setting |d (dm(r))/d (r/z)| < 0.01 instead of 0.001 results in ro/z ≈ 10], its collapse in wall scaling
despite thermal stratification is a persistent feature.

By contrast, the RSDH seems to exhibit the most distorted effects in the intermediate scales. To
illustrate, Fig. 12 (left column) shows Dm

u (r) and m2u′2m−2 �u2 against r/z bounded by z < r <

ro for m = 2, 3, 4, 5 under near-neutral thermal stratification measured at z = 1 m. To investigate
and capture this nonconstant deviation in 
(·) from unity, a regression problem can be formulated
following Katul et al. [21] with measured Dm

u (r) against measured m2u′2m−2 �u2. A regression
slope Am with increasing m can then be determined, as demonstrated in Fig. 12 (right column). The
presented data are again bounded by z < r < ro, and the RSDH prediction of Am = 1 is also plotted
(dashed lines). It can be seen that while subunity Am is found for all m, Dm

u (r) is still correlated
linearly with m2u′2m−2 �u2 at all m.

When raising Am to a power of 1/m, as shown in Fig. 13, A1/m
m ≈ 0.72 ± 0.17 under unstable

conditions, A1/m
m ≈ 0.71 ± 0.17 under near-neutral conditions, and A1/m

m ≈ 0.68 ± 0.18 under stable
conditions (or collectively, A1/m

m ≈ 0.7 ± 0.2), implying that 
(·) from this intermediate region
may be captured by a constant insensitive to m. Katul et al. [21] also reported a similar value and
trend (A1/m

m ≈ 0.72 ± 0.05) under near-neutral conditions for data collected over an ice sheet, which
suggests that deviation from the RSDH in the z < r < ro region could be captured and accounted
for through a quasiconstant A1/m

m . Note that the moment order 2m = 10 is included in this analysis
and shows a value of A1/m

m consistent with those of lower orders despite higher estimated statistical
convergence errors, indicating that A1/m

m could be less sensitive to such errors.
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FIG. 13. The regression slopes A1/m
m against m at all heights under unstable (left), near-neutral (center), and

stable (right) conditions.

V. STUDY LIMITATIONS AND DISCUSSION

A model for the high-order moments of the turbulent longitudinal velocity was proposed and
its coefficients Ap and Bp evaluated using new experiments. These experiments were conducted in
the atmospheric surface layer near the ground at small z/δ � 0.01, very high Reynolds number,

and mild thermal stratification (|ζ | � 0.2). A near-log behavior with z+ for u+ and u′2+
was

confirmed for the experimental conditions considered. Using standard constants in turbulence, the
predicted Ap was reasonably reproduced by the experiments while the predicted Bp deviated from
measurements except for slightly stable conditions where P/ε is closest to unity. An assessment of
the assumptions and data limitations follows in an effort to offer a model validation. With regard
to model assumptions, these include (i) the shape of the assumed longitudinal velocity spectrum,
(ii) the Gaussian assumption for u′, and (iii) the ability of the RSDH to predict high-order spectra
from the longitudinal velocity spectrum.

While the model spectrum presented in Fig. 1 led to analytical tractability, it is an idealization
that is likely to overestimate the energy content in the low-wave-number region beyond what the
current data set is able to resolve. The model spectrum extends the k−1 scaling at low wave numbers
to kδ = 1 and scales as a constant below kδ = 1. In reality, one would expect the spectrum to decay
to zero at k −→ 0 (for large scales) and to scale at least as k2 (e.g., in the Saffman spectrum). Thus,
the integration of this model spectrum from k = 0 to k = ∞ may be amplifying the variance in
the idealized shape, so that the corresponding A1 and B1 values may not be entirely compatible
with measurements that do not resolve such very large eddies. For example, if the region below
kδ = 1 scales as k2 in reality, the model spectrum would overestimate the energy in this region
by three times, which in turn also overestimates B1. As seen in Fig. 5, these larger scales are not
resolved by the sampled data as a tradeoff exists in atmospheric flow studies between the length
of the sampling period and stationarity. Another model idealization here is the extension of the
inertial subrange to the Kolmogorov microscale after which an abrupt energy cutoff was introduced.
For scales commensurate with kη > 0.1, the energy spectrum exhibits a number of features such
as a bump due to a bottleneck in the energy cascade followed by an exponential cutoff (e.g., the
Pao spectrum) as reviewed elsewhere [58]. Resolving these processes becomes significant when
βz/η < 10. However, for βz/η > 100, these processes become less significant because the interest
is in the integrated spectrum. Thus, extending the inertial subrange to kη = 1 followed by a cutoff
overestimates the energy content for kη < 1, but the cutoff kη > 1 underestimates the remaining
fine-scaled energy content, so that the effect of such over- and underestimation on the total energy
content becomes minor. Nonetheless, the idealized spectrum provides a straightforward analytic
result for the theory at hand, and its integrated value appears to reasonably match the measured
variances for the current data sets (as seen in Fig. 7 for the 2p = 2 cases).

The measured flow statistics are not Gaussian but do not appreciably deviate from Gaussian when
evaluated using the flatness and skewness factors. The flatness factor across all experiments (and z+)
varied from 2.9 to 4.0, but the majority of the runs were close to 3.0. The skewness, however, was
positive across all runs. The positive skewness may indicate that roughness sublayer effects have
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TABLE III. Sample studies of reported A1 [from fitting Eq. (2) to the u′2+
profile] and C1 [from fitting

Eu(k) = C1u2
∗k−1 to the first-order spectrum] values under neutral conditions. The Reynolds number δ+ is

included when available.

δ+ Authors Flow type
A1

1.19–1.27 (0.28–1.9) × 104 Meneveau and Marusic [20] Boundary layer in wind tunnel
(Melbourne HRNBLWT)

1.25 9.8 × 104 Hultmark [7] Pipe flow (Princeton Superpipe)
1.21 6.9 × 104 Marusic et al. [3] Channel flow (William B. Morgan LCC)
0.91 1.0 × 106 Current study ASL flow (SLTEST)

C1

1 950 Katul and Chu [28] Open channel over a smooth surface
1 1.9 × 104 Antonia and Raupach [59] Inner region of a rough-wall

laboratory boundary layer
0.95 Kader et al. [33] ASL flow (Tsimlyansk Field Station)
1.1 Katul et al. [36] ASL flow over a dry lake bed (Owen’s Lake)
1.01 Pond et al. [34] ASL flow over the sea
1.01 1.0 × 106 Current study ASL flow (SLTEST)

impacted the u′ statistics consistent with numerous laboratory experiments [54]. This impingement
appears not to have affected Ap, however.

The RSDH was evaluated in spectral and physical space for high-order spectra and structure
functions. The RSDH was derived under the assumption that small eddies are experiencing sweeps
due to the energy content of larger eddies. The cutoff scale defining large and small eddies remains
unclear when extending this analysis for eddy sizes larger than inertial (r/z > 1). The work here
suggests that in physical space and beyond eddy sizes dictated by ro (with 10 < ro/z < 100), cor-
rections to RSDH are scale-independent. For eddy sizes (ro/z < 10) where some scale dependency
exists in the correction to RSDH, compensatory mechanisms also exist and suggest operational
viability. Taylor’s frozen turbulence hypothesis was employed here, and its usage could cause scale
distortions when converting time to domain scale. The overall turbulent intensity σu/u � 0.17 for
all 30-min periods. While this turbulent intensity is small, it is not ideal. Nonetheless, two measures
[dm(r) and gm(r)] were used to evaluate scalewise interactions distorting predictions from RSDH.
These two measures cannot be impacted identically by Taylor’s hypothesis, yet they both agree on
the strength of the scalewise interactions and the cutoff ro/z.

A distinction between field and laboratory flows is that unlike in controlled settings where the
wind direction aligns precisely with the x-axis, there are no restrictions from the wind direction in
the atmosphere so that the separation between the u and v components is less clear. Any misalign-
ment between the x-axis and the incoming wind could then result in biases from the v-component
that reduce the effective production measured. This could explain why C1 determined from fitting
Eu(k) = C1u2

∗k−1 to the first-order spectrum in atmospheric studies (C1 = 0.95–1.1) tends to be
lower than A1 determined from u′2 profiles obtained in laboratory conditions (A1 = 1–1.27). As an
overview, reported A1 and C1 values from sample laboratory and field studies are summarized in
Table III. Recall that under the proposed theory, A1 = C1 [Eq. (13)]. Values of A1 and C1 from the
current study are also included; it can be seen that A1 from the measured data is close to the model
spectrum value of C1 = Coκ

−2/3 ≈ 0.92 with κ = 0.4, while C1 from measured spectra is slightly
higher at 1.01 (though as mentioned, the measured spectra do not fully resolve the scales in the −1
region).

Two other issues stand out in terms of experimental limitations: the first is that variable δ

across runs was not measured and was only estimated from near-surface heat and momentum
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fluxes. The second is that the estimated ratio P/ε is approximately 0.27, 1.40, and 0.85 for the
unstable, near-neutral, and stable stratification, respectively, when averaged across the available
30-min periods. Hence, The P/ε = 1 assumption of the logarithmic layer is reasonably valid only
under weakly stable conditions. As mentioned, the thickness of the roughness sublayer could have
also impinged on the log layer, affecting such assumptions in the log region. Perhaps the results here
remain insensitive to P/ε = 1 because the high-order spectra scale with (ε)2/3, a subunity exponent.

It will be remiss if errors associated with the measured u∗ value (obtained from a nearby but not
collocated sonic anemometer) and the assumption of a constant flux layer are not flagged. These
errors could also lead to inaccuracies in the calculated values of A1 and B1. Sonic anemometers
have an averaging path length of 0.1 m and can filter out a non-negligible portion of the momentum
and heat flux cospectra (especially at such a low z = 2 m). This underestimation can lead to an
underestimation in u∗ values used in the normalization here.

Despite the aforementioned theoretical and experimental limitations, agreement was found be-

tween predicted and measured u′2p
+

for all thermal stratification examined up to 2p = 8. Measured
Ap were reasonably captured by the model while measured Bp showed the most deviation under un-
stable and near-neutral conditions, a result that was not considered in a prior study [21]. Investigation
into the assumptions of the RSDH in physical space suggests that it may not be entirely correct, but
viewed as operationally viable due to inherent compensatory effects. Further, the deviations from the
RSDH predictions appear to be characterized by two regions that seem insensitive to the thermal
stratification examined here: one at large separations, where the RSDH appears to be plausible
but with a constant offset, and one at the intermediate scales bounded by 1 < r/z � 60, where the
distortions seem to be well-captured by the quasiconstant A1/m

m ≈ 0.72 ± 0.2. This suggests possible

avenues for correction in future modeling efforts of u′2p
+

that could account for the deviations in
the underlying RSDH assumption.

VI. CONCLUSION

The logarithmic relation of u′2p
+

with z/δ as explained by the RSDH and the presence of a −1
power-law scaling regime in Eu(k) is examined with longitudinal velocity data collected within 1 m
above the salt flats of Utah at very high Reynolds number. Building upon Katul et al. [21], which
examined the theory at a single sampling height under near-neutral conditions, the current study
examines the validity of the proposed theory across the logarithmic layer with multilevel data, and
additionally expands the theory to account for mild thermal stratification.

Due to the proximity of the measuring heights to the surface, ζ = z/L does not vary significantly
from near-neutral stratification and spanned mildly unstable to mildly stable stability conditions
(−0.13 � ζ � 0.19). As a result, measured Eu(k) are shown to be described by a two-regime
idealized spectrum such that the effect of the varying stratification is not strong enough to introduce

FIG. 14. Same as in Fig. 10 but for z = 0.0625 m.
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FIG. 15. Same as in Fig. 10 but for z = 0.125 m.

different coherent structures that would alter the −1 scaling regime. Nonetheless, the varying
atmospheric stability conditions do impart a noticeable signature in the spectra as it is seen to
shift the characteristic eddy size where the −1 and the −5/3 power laws intersect from 1/z to
1/(βz), where β is a constant. This shift allowed for an extension of the proposed theory to
incorporate the effects of mild thermal stratification through β, from which coefficients of the
generalized logarithmic law can be determined via well-known coefficients Co and κ . Based on
only two assumptions—that the RSDH applies (turbulent eddies are noninteracting and remain
undistorted) and that the statistics are Gaussian—the proposed theory has been shown to be able
to predict higher-order statistics from the first-order spectrum. Compared to prior work that used
Gaussian statistics, the topology of attached eddies in physical space, and the noninteracting eddies

assumption to explain the logarithmic relation of u′2p
+

with z/δ (after a lengthy derivation), the work

here offers additional foresight: (i) Deviations from the logarithmic relation of u′2p
+

with z/δ can
now be explicitly linked to the shape of the velocity spectrum (if known); (ii) the interactive effects

of large and small eddies can be traced to coefficients linking u′2p
+

with z/δ; (iii) all the coefficients
derived here emerge from well-established constants in boundary layer theories; (iv) moving beyond
attached and detached eddies, the effect of very large eddies (kδ < 1) can be accommodated in the
present framework if their spectral signatures are known.

It is worth noting that the proposed theory could apply to both smooth and rough wall conditions
with the same coefficients. While the mean velocity profile is highly dependent on the roughness
of the boundary, the velocity variance profile is less sensitive to the underlying surface roughness.
That is, while the roughness of the wall plays an important role in momentum transport and results
in an offset in the logarithmic u+ profile (smooth walls tend to maintain the coherency of coherent
structures for a longer amount of time, while the presence of roughness elements tends to disturb

FIG. 16. Same as in Fig. 10 but for z = 0.25 m.
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FIG. 17. Same as in Fig. 10 but for z = 0.5 m.

these structures and randomize their impact), under the view that large-scale eddies from the outer
layer impinge at the wall, the spectrum (and velocity variance) is less sensitive to surface conditions.
The results obtained by interpreting the higher-order spectra via the RSDH therefore should apply
to both smooth and rough wall conditions.

Here, a model spectrum was adopted that allowed for a shift between the break point of the −1
and −5/3 scaling regions to account for mild thermal stratification. Although the cases examined
are close to near-neutral stability, this is a necessary first step to understanding more complicated
cases in which the entire shape of the spectrum shifts and the model spectrum no longer applies.
Future efforts can then be focused on developing models for the first-order spectrum, from which
the higher-order statistics can be predicted. The current work also sets the stage to understand the
interaction between the large and small scales and to what degree their interactions are important.
Since the RSDH precludes interactions between large and small scales, it provides the reference
calculation for results when there are no interactions. Building upon this work, the effect of

interactions on bulk statistics like u′2p
+

can then be examined and compared to this reference case.
Lastly, whether the RSDH can also be used to predict the variation with z/δ of high-order

statistics for scalars that are transported without inherent dynamic interactions in the flow has not
been explored and is a topic for future investigations.
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APPENDIX

Variations of dm(r) and gm(r) with r/z for m = 2, 3, 4, 5 for data collected at all heights are
presented in Figs. 14–17 for completeness.
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